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SORPTION IN A PLANE~RADIAL FILTRATION FLOW
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The process of filtration of particles of an admixture is always
accompanied by sorption, which in 2 number of cases, exerts an im-
portant influence on the space-time distribution of particles in the flow.
The introduction of a number of new processes in the field of petroleum
production (such as the "enriching® of the water pumped into a stratum
with surface-active substances) requires a quantitative evaluation of
the sorption effect. Below we present two forms of exact solution of
the sorption problem in a plane-radial flow.

We note that a number of papers [1-7] present results obtained
from a study of sorption in one-dimensional filtration flows, The pro-
blem considered differs from these investigations not only in relation
to the geometry of the flow, but also by taking into account the de-
pendence of the sorption kinetics on filtration rate.

1. Neglecting longitudinal and "convective” diffusion of particles,
we can write the continuity equation for a radial flow of sorbate in the
form

dc da
2nr  or &t

dc
m et = 0. (1.1)

Here c(r, t) is the concentration of sorbate in the liquid, a(r, t) is
the adsorption, Q is the volume flow of liquid through an arbitrary
cylinder of radius r, m is the porosity of the sorbent.

As usual, we take the kinetic equation in the form [1-3]

dajor = B (c — c*). (1.2)

Here B is the kinetic coefficient, c¢” is the equilibrium concentra-
tion with respect to the adsorption a.

If the concentration of sorbate is low, it is natural to assume that
the relationship between a and c* is linear, that is, corresponds to the
Henry isotherm

a = Hc* (H is the Henry constant). (1.3)

According to experiments made by L. I. Rubinshtein [5] with
calcium and sodium solutions of DS (Soviet detergent) and experiments
made at the Ufa Petroleum Scientific Research Institute by L. N.
Malysheva with aqueous solutions of the surface-active substance
OP-10, the kinetic coefficient 8 is linearly dependent on filtration rate v

8= Ar (1.4)

or, since in our case v = Q/2rr

B = AQ/2mr. (1.5)

Asswme that a sorbate with concentration ¢, begins to be pumped
through a well of radius r at time t = 0, and further that at the initial
time there is no sorbate either in the liquid phase or in the adsorbed
state. Then to equations (1.1)-(1.5) it is necessary to add the condi-
tions

e{r, 0) =0, a(r, O) =0, c(ro, t) = ¢a. (1.6)

2. In equations (1,1)-(1.5) we made the change of variables

_ ma (r® — rg?) .
=t Tl B, (2.1)

Q

which corresponds to a time reading at each point of space from the
moment of approach of the leading edge of the sorption wave to this
point. Obviously, <(£,7) and a (€, 7) differ from zero only when 7= 0,

Now system (1,1)~(1.5) assumes the form
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By eliminating the function a(g, 7) we obtain for the dimensicnless
concentration u(g,7) = c(&, 7)/cy the equation

u x’ra_u_ L du 0
st dt 31
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To this must be added the conditions following from (1.6) and
(2.2)

u(En =1, w0 =&, (2.4)
It is easy to see that since conditions (2.4) were given on the
characteristics of equation (2.3)—the straight lines § = const, T = const,
the formulated problem is a Goursat problem for equation (2.3). As is

well know, consistency of the initial and boundary conditions at the
point (§ = Eq,7 = 0) ensures the existence and uniqueness of the solution

of problem (2.3), (2.4).
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3. To solve the problem we use the Laplace transformation

=
U E, s = \ e (B, 1) dr.

il

(3,1)

Applying (3.1) to equation (2,3) and conditions (2.4), after integra-
tion of first-order ordinary differential equation for U(E, s) = u(&, 1), we
obtain

U s)=F( s &5

P =L L Véf_])ﬁs. (3.2)
? s L1 - vEes
Using the Riemann-Mellin inversion formula, we write
a+ioo
w (g, 1) = L U (&, s) ds. (3.3)
2ni )
a-ioo

Since the function (g, 1) = 1, its growth index o' = 0; accordingly,
an arbitrary positive number can be selected as the integration abscissa
o. We introduce the representation

F@@=§uﬁ%@m§+m“+m~m@+m}
It is easy to see that the singular points of U(E, s) will be:
(1)s =0 simple pole
(2)s= - (3.5}

H . ; .
(@) s= - rU}»logeuuthrmc branch points.
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Thus, the function F(E, s) is analytic in the half-plane Re s < o if
we exclude the pole s = 0 and the segment of the real axis (—pg, —#).
including its end. Obviously, the uniqueness of F(E, s) to the left of the
point s = —pu, is ensured by the presence of two branch points. Since
the Jordan lemma is satisfied for T > 0, we replace direct integration
in (3.3) by the contour L = L, + L, -+ L}L + 1 4 2.indicated in Fig, 1.

Obviously,

10 1
%g T F(E, 5) ds = ¢* &%), [ g &TF (B, s)ds— 0 (3.6)
io L’I"u
with Ly, contracting to a point.
" Further, on the upper edge of the cut 1 the variable s = z'®

(Bo> 2z 2>p ¥ p)

1
Jo 22?'18 &TF (5, 8) ds =
1
.1 ¢ EETE (x — p) A inh
S l:———*——] exp o= da. (3.7

= Toami z (& (o — )
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On the lower edge 2 the variable s = xeIT and

1
J@ :2-:!—18 T F(§, 8)ds =
H .

Bo e _ Y i
_1l\e [E(z p)]/vxexp inh

Tawi) e G — v 4 @.8)
pe
iv
11-;
9 12
/) el
i
Fig. 2
The sum of the integrals is written
L0 e Ee—p e mh
J+@) =—x S z [m] _sin "v;‘dx. (3.9)
tp

On the contour L, the variable s = — p 4 pe'® (— 1 < @ < W)
and

A T
Jl-t:Q?i& & F (&, s)ds =

Ly

’§ pe™ [ Epel®

Ajvs
— . e dp . (3,10)
—ptpe® L & (o —u + pe™®) ] ?

-
T 2n
R
When X £ < 1 passage to the limit under the integral sign in (3.10)
as p —> 0 is legitimate; this gives
limJ, = 0. (3.11)

The integral (3.9) also converges when A § < 1, and in this case
the solution has the form

- et G & 5N E e — ) T g T 3,12
u@ﬂ—i__q_{ zEmeﬂ sin T dz. (3.12)
I~

Assume now that A > 1, In (3,10) we pass formally to the limit,
retaining only the principal term

e 1-AE
limJ, = ¢ P [ § (3.13)
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After also isolating the principal part of the integral JOHD, yhich
diverges when A § > 1, we can write

~1T A 1-AE ~2E
lim W+ — . €*7p [ 3 ] sin AE, (3.14)
' A OE — 1) LB (o — .
Thus,

lim J, + lim J&+®) _ o,
o0 >0

(3.15)

Similarly, we find that terms of the order of P2 2% 2 erc,,
mutually cancel out, If A§ # n is a whole number, all terms J
vanish, which leads to convergence of the expression J_ - J+@),
In other words, (J, -+ JV*®) is a regularization of the integral
(8.12), which deverges when A& > 1, Thus, for arbitrary A§ the
solution can be written in the form

A (E-E) B e e
WGy =1-— g \ i[M] M in T ap. (3. 16)
1 ® ¢ (oo — ) vz

Here R is the symbol of regularization of the integral at the
lower limit g, Obviously, when A § < 1 the regularization is trivial,
The singularity of the integrand has the from (x - p) TMUX hen x —
-> 13 therefore, we can write

13
g T AR ol (1 + %— zlnz4 ) (4 v )3.17)

that is, the regularized function can be represented in the form of the
sum of exponential regularizati »ns with a decreasing exponent from
A Etosome 6< 1, Amethod forregularization of functions with exponential
singularities was described in [8].

Unfortunately, for quite large A £ the regularization process leads
to extremely unwieldy formulas whose numerical analysis is difficult.

4, In order to obtain u(¢,T) in a form more convenient for com-
putations, we will consider the integration contour L* shown in Fig, 2.
It is easy to confirm that in the region lying between L* and the
straight integration line Re s = o the function F(§, s) is analytic, the
Jordan lemma conditions are also satisfied, and therefore,

u(E 7= ﬁ & & U, 9) ds. (4.1)

L'
Assuming that at L¢* s = ~ix, where p < x < «, we obtain

]
fomizfmpimme wy
1 — vz T )

8]~

o2}

Similarly, at L,* we have s = ix and

o0

1 ixe [ 1 4 ibve Vivx dx

JL=‘_§:TL'& ¢ [1 T i§ova:] =" (4.3)
P

The integral for a semicircle of radius p is equal to half the re-
sidue of the function F(E, s) at the point s = 0 and therefore has the
form

Jpe = Vaet R, (4.4)

Le*
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Using the notation

1+ itve=Re™ (R = (1 + et @ = arc tg Evy)

(4.5)
14 iBgvz = Ree'™ (B, = (1 + §M4)' @, = arc tg Eva)
and adding (4.2), (4.3) and (4.4), after simplification we obtain

v =2 +

+ e’ &Y 00exp b 91— 9 sin{ zv — AR\ de R =|n 2y (4.6)
x S YT ( )— ( T) :

vz w 2

In the case of a pointsource (6 = 0,93 = 0, Ry = 1,¢ = ¢4, R = InRy)
we have

Y )
4\ oxp _xxgsm (g_’ﬁ) de. 4.7

z

u&ﬂ=%+%—
0

It is easy to check that the convergence of the integrals (4,6) and
(4.7) is ensured, since when x = 0 and x = « the integrand behaves
as x71 sin kx,

In numerical computations it is convenient to divide the integra-
tion interval into two parts (0,A) and (A, =) in such a way that the
integral for the second can be discarded or evaluated from integral
sine tables, It is convenient to use the Filon formulas {9] for numerical
integration in the first interval for large 7/v.

As an example, Fig, 3 shows the results of compurations of u(r) us-
ing formula (4.7) for the case £ = 10 m, A = 0.1 m™%, v = 4 days/m.
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