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SORPTION tN A PLANE-RADIAL FILTRATION FLOW 
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The process of f i l t rat ion of part icIes of an admixture  is always 
accompan ied  by sorption, which in a number of cases, exerts an i m -  

portant inf luence  on the s p a c e - t i m e  distr ibut ion of par t ic les  in the flow. 

The introduct ion of a number of  new processes in the f ield of pe t ro leum 

production (such as the "enr iching"  of the water  pumped into a s t ra tum 

with su r f ace -ac t ive  substances) requires a quan t i t a t ive  evaIuat ion of 

the sorption effect .  Below we present two forms of exac t  solution of 

the sorption problem in a p l a n e - r a d i a l  flow. 

We note that  a number  of papers [ 1 - 7 ]  present resuhs obtained 
from a study of sorption in one-d imens ionaI  f i l t ra t ion flows. The pro- 

b l em considered differs from these invest igat ions  not only in re la t ion  

to the geomet ry  of the f low,  but also by tak ing  into account  the de-  

pendence  of the sorption k ine t i cs  on f i l t ra t ion rate.  

1. Neglec t ing  longi tud ina l  and "convec t ive"  diffusion of part icles ,  

we can write the cont inui ty  equat ion  for a rad ia l  flow of sorbate in the 

form 

Oc Q Oc Oa 
'~ 0 - - / - +  2a t  or + - F i - =  o.  (L1) 

Here c(r, t) is the concent ra t ion  of sorbate in the l iquid,  a(r, t)  is 

the adsorption, O is the vo lume flow of l iqu id  through an arbitrary 
cyl inder  of radius r, m is the porosity of the sorbent. 

As usual, we take  the k ine t i c  equat ion  in the form [ 1 - 3 ]  

Oa/Ot = ~3 (c - -  c*). (1.2) 

Here B is the k ine t i c  coeff ic ient ,  c:' is the equ i l ib r ium concent ra -  
t ion tr respect to the adsorption a. 

If the concentra t ion of sorbate is low, i t  is natural  to assume that  

the re la t ionship  between a and c* is l inear ,  that  is, corresponds to the 
Henry isotherm 

a = Hc* (H is the Henry constant) .  (1.3) 

According to exper iments  m a d e  by L. L Rubinshtein [6] with 
c a l c i u m  and sodium solutions of DS (Soviet  de tergent)  and exper iments  

m a d e  at the Ufa Petroleum Scient i f ic  Research Inst i tute  by L. N. 

Malysheva  with aqueous solutions of the su r face -ac t ive  substance 

OP-?0, the k ine t i c  coef f ic ien t  /3 is l inea r ly  dependent  on f i l t rat ion rate  v 

,3 = s  (1.4) 

or, s ince in our case v = Q/2~r  

.8 = ~.Q/2ar. (1 .5)  

Assume that  a sorbate with concentra t ion co begins to be pumped 

flrrough a wel l  of radius r at t i m e  t = 0, and further that  at the in i t i a l  

t i m e  there is no sorbate e i ther  in the l iquid phase or in the adsorbed 

state.  Then to equat ions (1 .1 ) - (1 .5 )  i t  is necessary to add the condi-  

tions 

, ( r ,  0 ) = 0 ,  ,,(,,, 0 ) = 0 ,  c ( ~ o , t ) = c o .  (1.6) 

2. In equat ions (1 .1) - (1 .5)  we m a d e  the change of var iab les  

z = t - -  " z a  (P" - -  ~ 0 9  g = r ,  ( 2 A )  
Q 

which corresponds to a t i m e  reading at each  point of space from the 

momen t  of approach of the l ead ing  edge of the sorption wave to this 

point.  Obviously, c (g , r )  and a (g, r )  differ from zero ortty when r -> 0. 

Now system (1 .1)- (1 .6)  assumes the form 

Q oc • o a = o, o ,  ~(2 (c - - H - h 0 .  (2.2) 
2 ~  0~ ' 0T -aT- = "0~--~- 

By e l im ina t i ng  the function a([ ,  r )  we obtain for the dimensionless  

concentra t ion u(g,-r) = c(g, r ) /c0  the equat ion 

a~o~ + a~ + v~ a ~ - ~  v = - ~ -  k ~ 0 < g <  . (2.3) 

To this must  be added the conditions following from (1.6) and 

(2.2) 

(~,, x) = t ,  u (~, 0) = e -x ([-F,o). (2.4) 

It is easy to see that  s ince conditions (2.4) were g iven  on the 

charac ter i s t ics  of equat ion  ( 2 . 3 ) - t h e  straight  l ines  g = const, r = const, 
the  formulated problem is a Goursat problem for equat ion (2.3). As is 

wel l  know, consistency of the in i t i a l  and boundary conditions at the 

point ([ = g0,r = 0) ensures the ex i s tence  and uniqueness of the solution 

of problem (2.3), (2.4). 

y 

Fig. 1 

3, To solve the problem we use the Laplace  t ransformation 

c o  

U (g, ~) = I e-%,  (~, *) d*. 
0 

( < i )  

Applying (3.1) to equat ion  (2.3) and conditions (2.4), af ter  in tegra-  

t ion of first-order ordinary d i f ferent ia l  equat ion  for U(G s) = u(g, r), we 

obtain 

(7 (L +) = F ([, s) e ->' e.-~o) 

L I  - -  v~os J 
( < 2 )  

Using the Riemann-Mel l in  inversion formula,  we write 

c r  

' f  
ct - l c o  

d :  L 'r (L  s) ds.  (3.3) 

Since the function u([, r )  -< 1, its growth index c~' = O; accordingly,  

an arbitrary posi t ive  number can be se lec ted  as the in tegra t ion  abscissa 
a .  We introduce the representa t ion 

( , l ) 
~ - ,  ~ -  ~ ~ I t o  �9 (<4)  

It is easy to see that the singular points of U([, s) will be: 

(1) s = 0 sil l lple pole 

(2) s=- ~r }logarithmic branch points. 
(3) s 0 

(s.s)  
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Thus, the function F(g, s) is analytic in the half -plane Re s < c~ if 
we exclude the pole s = 0 and the segment  of the real axis ( -ga ,  - g ) -  
including its end. Obviously, the uniqueness of F(g, s) to the left of the 
point s �9 -Po is ensured by the presence of two branch points. Since 
the Jordan l emma is satisfied for 7" > 0, we replace direct integration 
in (3.3) by the contour L = L0 + L~, q- Lit q- t + 2,indicated in Fig. 1. 

Obviously, 

2~i  ~, e F (~, s) ds = e x ff'-v'J, ~ J e rr F (~, s) d s -*  O (3.6) 
L~ Lit ~ 

with L/~ 0 contracting to a point.  
Further, on the upper edge of the cut 1 the variable s = ze TM 

(IXo > Z ~ IX + p) 

j(r)_____~ eS'~F (~, s) d s =  

1 

i ~-=" r ! ~  = ~ l -~/'= ~x~ ~ a~. 
= -- 2-~ z kgo (IXo -- x)J 

(3.7) 

On the lower edge 2 the variable s = xe-iV and 

I (' s ,  ~ ~'(~) = ~  e F ( $ ,  s) ds = 
2 

[to 

' f ~ r! Ix} -1 - 
/x+p 

(3.8) 

( 

Fig. 2 

The sum of the integrals is written 

t , - =  [- i x -  Ix) l- , Xsin = .~ ~--~ dz .  (3.9) 
;(1)+(~) _ ~- ~ k~-~~-~" ~) 

Ix+~ 

On the contour Lg the var iable  s = - -  Ix + pe i~ ( - -  z~ < q~ < z 0 

and 

J[t " ~ i  F (~, s) ds = 
L~ 

I i ~ [ =~-ff- _ i x +  
e t u d e .  (3.10) 

~P e~w l ~./'~s 
~0 (ixo ~ ~- 0e ~) 

When X g < 1 passage to the limit under the integral sign in (3.10) 
as p --~ 0 is legi t imate;  this gives 

lira J~  = O. (3.11) 

The integral (3.9) also converges when ).g < 1, and in this case 
the solution has the form 

e-X (~'-%) i* e-x" [ ~ (x -- Ix) l-xl~x sin z~k dx. (3.12) 

[t 

Assume now that k~ > 1. In (3.10) we pass formally to the l imit ,  
retaining only the principal term 

e-~" P~-x~ I x) ]->~ sin a ~ .  [ o(ixo\ (3.13) 

After also isolating the principal part of the integral J(D+(z). which 
diverges when X ~ > 1, we can write 

lim j(1)+(2) e-~'Pz-x~" r---L__~ l -'a sin a~,~. (3.14) 
= -  ~ - - - i )  L~o (ix. - Ix) l 

Thus, 

lira ]~ -}- lira j(i)+(2) = 0. (8.15) 
~'-~0 p-~0 

Similarly, we find that terms of the order of p~-)'~, pS-~r , e tc . ,  

mutual ly  cancei  out. If  X~ ~ n is a whole number,  all terms J/~ 
vanish, which leads to convergence of the expression j -k 1(*)+(~). 
In other words, (J~ -k J(~) (2~) is a regularizatiofi of the integral 
(3.12), which deverges when k~ > 1. Thus, for arbitrary X~ the 
solution can be written in the form 

Here Rg is the symbol of regularization of the integral at r_~e 
lower l imit  p. Obviously, when X ~ < 1 the regularization is trivial.  
The singularity of the integrand has the from (x - g) -~./ux when x 
--~ g; therefore, we can write 

x~ 

( ) z 1+tit-' = z-x~(1-z~-'+... = z-},~ i q- k~_~ z in  z + . . .  (i + . .  0(3.17) 
IX 

that is, the regularized function can be represented in the form of the 
sum of exponential  regularizati  )ns with a decreasing exponent from 
k ~ to some 0 < 1. A method for regularization of functions with exponential  
singularities was described in [8]. 

Unfortunately, for quite large X ~ the regularization process leads 
to extremely unwieldy formulas whose numerical  analysis is difficult. 

4. In order to obtain u(~,r)  in a form more convenient for com- 
putations, we will consider the integration contour L* shown in Fig. 2. 
It is easy to confirm that in the region lying between L* and the 
straight integration line Re s = a the function F(~, s) is analytic, the 
Jordan 1emma conditiom are also satisfied, and therefore, 

t I es~: (4.1) u (L "0 = ~ U (~, s) ds. 
L*  

Assuming that at L:* s = - ix ,  where p _< x < *% we obtain 

I~,.  = ~ i  l ~-'~'F i - i~,~ l-~I,~ e~ k ~ J  -g" (4.2) 
r  

Similarly, at Lz* we have s = ix and 

oo 

kl + / g o " - J  -7-" 
p 

( 4 . 3 )  

The integral for a semicircle  of radius p is equal to ha l f  the re-  
sidue of the function F(~, s) at the point s = 0 and therefore has the 
form 

J~. = 1/se~" (~'-~). (4.4) 
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Using the nota t ion  

t + igvx =// le  TM 

t -~- i~oVX = .Flue TM 

(R t = (t  -}- ~2vZx~)'/' r = are tg ~w)  

(//~ = (t  + $o2v2z~) '/' % = arc tg goVX) 

(4.5) 

and adding (4.2), (4.3) and (4.4), af ter  s i m p l i f i c a t i o n  we obta in  

1 
" ( L ~ ) = ~  -4- 

oo  

+ - - - K - - -  - -  z 
O 

In the case of a point  source (g0 �9 O, ~o z = O, ~ = 1, ~o = ~1, R = ln.RI) 

we h a v e  

"(~'~)=g+ ~ o --- 7-" 
o 

k is easy  to check  tha t  the convergence  of the in tegra ls  (4,6) and 

(4.7) is ensured, s ince  when x = 0 and x = *~ the in tegrand behaves  
as x - t  sin kx. 

In n u m e r i c a l  computa t ions  i t  is conven ien t  to d iv ide  t i le  i n t eg ra -  

t ion  in te rva l  into two parts (0,A) and (A, ~)  in such a way that  abe 

in tegra l  for the  second can  be discarded or eva lua ted  from in teg ra l  

s ine  tables .  It is conven ien t  to use the Filon formulas [9] for n u m e r i c a l  

i n t eg ra t ion  in the  first i n t e rva l  for l a rge  r/v. 

As an e x a m p l e ,  Fig. 3 shbws the results of computa t ions  of u(r )  us- 

ing  formula  (4.7) for the  case g = 10 m,  X = 0.1 m 'X,v  = 4 days / r e .  
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